Varying coefficient model for gene-environment interaction: a non-linear look
نویسندگان
چکیده
MOTIVATION The genetic basis of complex traits often involves the function of multiple genetic factors, their interactions and the interaction between the genetic and environmental factors. Gene-environment (G×E) interaction is considered pivotal in determining trait variations and susceptibility of many genetic disorders such as neurodegenerative diseases or mental disorders. Regression-based methods assuming a linear relationship between a disease response and the genetic and environmental factors as well as their interaction is the commonly used approach in detecting G×E interaction. The linearity assumption, however, could be easily violated due to non-linear genetic penetrance which induces non-linear G×E interaction. RESULTS In this work, we propose to relax the linear G×E assumption and allow for non-linear G×E interaction under a varying coefficient model framework. We propose to estimate the varying coefficients with regression spline technique. The model allows one to assess the non-linear penetrance of a genetic variant under different environmental stimuli, therefore help us to gain novel insights into the etiology of a complex disease. Several statistical tests are proposed for a complete dissection of G×E interaction. A wild bootstrap method is adopted to assess the statistical significance. Both simulation and real data analysis demonstrate the power and utility of the proposed method. Our method provides a powerful and testable framework for assessing non-linear G×E interaction.
منابع مشابه
Partial linear varying multi-index coefficient model for integrative gene-environment interactions.
Gene-environment (G×E) interactions play key roles in many complex diseases. An increasing number of epidemiological studies have shown the combined effect of multiple environmental exposures on disease risk. However, no appropriate statistical models have been developed to conduct a rigorous assessment of such combined effects when G×E interactions are considered. In this paper, we propose a p...
متن کاملA Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment
In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...
متن کاملDevelopment of a GEP model to assess CERCHAR abrasivity index of rocks based on geomechanical properties
The CERCHAR abrasivity test is very popular for determination of rock abrasivity. An accurate estimation of the CERCHAR abrasivity index (CAI) is useful for excavation operation costs. This paper presents a model to calculate CAI based on the gene expression programming (GEP) approach. This model is trained and tested based on a database collected from the experimental results available in the ...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملHigh dimensional variable selection for gene-environment interactions
Gene-environment (G×E) interaction plays a pivotal role in understanding the genetic basis of complex disease. When environment factors are measured in a continuous scale, one can assess the genetic sensitivity over different environmental conditions on a disease phenotype. Motivated by the increasing awareness of the power of gene set based association analysis over single variant based approa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 27 15 شماره
صفحات -
تاریخ انتشار 2011